Hypoxia Patterns in Primary and Metastatic Prostate Cancer Environments

原发性和转移性前列腺癌环境中的缺氧模式

阅读:7
作者:Santosh Kumar Bharti, Samata Kakkad, Pierre Danhier, Flonne Wildes, Marie-France Penet, Balaji Krishnamachary, Zaver M Bhujwalla

Abstract

Metastatic dissemination continues to be a major cause of prostate cancer (PCa) mortality, creating a compelling need to understand factors that play a role in the metastatic cascade. Since hypoxia plays an important role in PCa aggressiveness, we characterized patterns of hypoxia in the primary tumor and metastatic environments of a human PCa xenograft. We previously developed and characterized an imaging strategy based on the hypoxia response element (HRE)-driven expression of long-lived enhanced green fluorescent protein (EGFP) and short-lived luciferase (luc) fused to the oxygen-dependent degradation domain in human PCa PC-3 cells. Both reporter proteins were placed under the transcriptional control of a five-tandem repeat HRE sequence. PC-3 cells also constitutively expressed the tdTomato red fluorescent protein, allowing cancer cell detection in vivo. This "timer" strategy can provide information on the temporal evolution of HIF activity and hypoxia in tumors. Here, for the first time, we performed in vivo and ex vivo imaging of this dual HIF reporter system in PC-3 metastatic tumors implanted orthotopically in the prostate and PC-3 nonmetastatic tumors implanted subcutaneously. We observed distinct patterns of EGFP and luc expression in subcutaneous and orthotopic tumors, and in metastatic nodules, that provide new insights into the presence of hypoxia at primary and metastatic tumor sites, and of the role of hypoxia in metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。