Compromised macrophages contribute to progression of MASH to hepatocellular carcinoma in FGF21KO mice

受损的巨噬细胞导致 FGF21KO 小鼠的 MASH 发展为肝细胞癌

阅读:5
作者:Xiaoju Shi, Qianqian Zheng, Xingtong Wang, Wei Guo, Ziqi Lin, Yonglin Gao, Emily Shore, Robert C Martin, Guoyue Lv, Yan Li

Abstract

Metabolic dysfunction-associated steatohepatitis is well accepted as a potential precursor of hepatocellular carcinoma. Previously, we reported that fibroblast growth factor 21 (FGF21) revealed a novel anti-inflammatory activity via inhibiting the TLR4-IL-17A signaling, which could be a potential anticarcinogenetic mechanism to prevent to MASH-HCC transition. Here, we set out to determine whether FGF21 has a major impact on Kupffer cells' (KCs) ability during MASH-HCC transition. We found aberrant hepatic FGF21 and KC pool in human MASH-HCC. Lack of FGF21 up-regulated ALOX15, which converted the oxidized fatty acids to induce excessive KC death and mobilization of monocyte-derived macrophages (MoMFs) for KC replacement. Lack of FGF21 oversupplied free fatty acids for sphingosine-1-phosphate (S1P) cascade synthesis to mediate MASH-HCC transition via S1P-YAP signaling and cross-talk between tumor cells and macrophages. In conclusion, lack of FGF21 accelerated MASH-HCC transition via the S1P-AP signaling. Compromised MoMFs could present as tumor-associated macrophage phenotype rendering tumor immune microenvironment for MASH-HCC transition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。