Mechanical stretch induces angiotensinogen expression through PARP1 activation in kidney proximal tubular cells

机械拉伸通过激活肾脏近端小管细胞中的 PARP1 诱导血管紧张素原表达

阅读:5
作者:Jeong Soon Lee, Jung Yul Lim, Jinu Kim

Abstract

Poly(ADP-ribose) polymerase 1 (PARP1) contributes to fibrosis in several disease models. Recent in vivo data indicate that loss of PARP1 attenuates renal fibrosis and inflammation independent on transforming growth factor-β (TGF-β); however, the role of PARP1 in kidney tubular cells in response to tubulointerstitial fibrosis remains to be defined. Here, we report that PARP1 activation after mechanical stretch of kidney proximal tubular cells enhances angiotensinogen expression via nuclear factor kappa B (NF-κB) activation. Mechanical stretch for 24 h increased PARP1 expression and activation in mouse cortical proximal tubular (MCT) cells. Treatment with 3-aminobenzamide, a PARP1 inhibitor, efficaciously reduced the PARP1 activation induced by mechanical stretch. PARP1 inhibition also reduced angiotensinogen expression and NF-κB p65 phosphorylation induced by mechanical stretch. TGF-β1 expression and secretion were enhanced by mechanical stretch, but PARP1 inhibition did not change the levels of TGF-β1. These data demonstrate that mechanical stretch-induced PARP1 activation contributes to angiotensinogen expression and NF-κB activation in kidney proximal tubular cells, resulting in the promotion of renal tubulointerstitial fibrosis and inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。