Neuroblastoma causes alterations of the intestinal microbiome, gut hormones, inflammatory cytokines, and bile acid composition

神经母细胞瘤会导致肠道微生物群、肠道激素、炎症细胞因子和胆汁酸成分发生改变

阅读:5
作者:Christoph Castellani, Georg Singer, Margarita Kaiser, Thomas Kaiser, Jianfeng Huang, Daniela Sperl, Karl Kashofer, Guenter Fauler, Barbara Guertl-Lackner, Gerald Höfler, Holger Till

Conclusions

The present study provides a first glimpse that human NB in a murine model induces tumor cachexia associated with alterations in metabolic and inflammatory parameters, as well as changes in the intestinal microbiota. Since the intestinal microbiome is known to contribute to the host's ability to harvest energy, a favorable modulation of the intestinal microbiome in tumor patients could potentially represent a novel therapeutic target to prevent tumor-associated cachexia.

Methods

Athymic Hsd:Fox1nu mice received subperitoneal implantation of human NB cells (MHH-NB11) (tumor group, TG) or culture medium (sham group). Following 10 weeks of tumor growth, all animals were sacrificed to collect total white adipose tissue (WAT). Luminex assays were performed for gut hormone and inflammation marker analysis. Bile acids were measured by high-performance liquid chromatography-mass spectrometry in feces and serum. The microbiome of the ileal content was determined by 16S rDNA next-generation sequencing.

Objective

To assess the effect of neuroblastoma (NB) on the intestinal microbiome, metabolism, and inflammatory parameters in a murine model. Materials and

Results

At 10 weeks, tumors masses in the TG reached a mean weight of 1.10 g (interquartile range 3.45 g) associated with a significant reduction in WAT. Furthermore, in the TG, there was a marked reduction in leptin and an increase in glucagon-like peptide 1 serum levels. Moreover, the TG mice displayed a pro-inflammatory profile, with significant increases in monocyte chemotactic protein 1, tumor necrosis factor alpha, and interleukin-10. Lithocholic acid, deoxycholic acid, and ursodeoxycholic acid were significantly decreased in the stool of TG mice. Significant alterations of the intestinal microbiome were found in the ileal contents of the TG. Conclusions: The present study provides a first glimpse that human NB in a murine model induces tumor cachexia associated with alterations in metabolic and inflammatory parameters, as well as changes in the intestinal microbiota. Since the intestinal microbiome is known to contribute to the host's ability to harvest energy, a favorable modulation of the intestinal microbiome in tumor patients could potentially represent a novel therapeutic target to prevent tumor-associated cachexia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。