Glutathione peroxidase-1 plays a major role in protecting against angiotensin II-induced vascular dysfunction

谷胱甘肽过氧化物酶-1 在预防血管紧张素 II 诱发的血管功能障碍中起着重要作用

阅读:6
作者:Sophocles Chrissobolis, Sean P Didion, Dale A Kinzenbaw, Laura I Schrader, Sanjana Dayal, Steven R Lentz, Frank M Faraci

Abstract

Levels of reactive oxygen species, including hydrogen peroxide(,) increase in blood vessels during hypertension and in response to angiotensin II (Ang II). Although glutathione peroxidases are known to metabolize hydrogen peroxide, the role of glutathione peroxidase during hypertension is poorly defined. We tested the hypothesis that glutathione peroxidase-1 protects against Ang II-induced endothelial dysfunction. Responses of carotid arteries from Gpx1-deficient (Gpx1(+/-) and Gpx1(-/-)) and Gpx1 transgenic mice, and their respective littermate controls, were examined in vitro after overnight incubation with either vehicle or Ang II. Under control conditions, relaxation to acetylcholine (ACh; an endothelium-dependent agonist) was similar in control, Gpx1(+/-), and Gpx1 transgenic mice, whereas in Gpx1(-/-) mice, responses to ACh were impaired. In control mice, ACh-induced vasorelaxation was not affected by 1 nmol/L of Ang II. In contrast, relaxation to ACh in arteries from Gpx1(+/-) mice was inhibited by approximately 60% after treatment with 1 nmol/L of Ang II, indicating that Gpx1 haploinsufficiency markedly enhances Ang II-induced endothelial dysfunction. A higher concentration of Ang II (10 nmol/L) selectively impaired relaxation to ACh in arteries from control mice, and this effect was prevented in arteries from Gpx1 transgenic mice or in arteries from control mice treated with polyethylene glycol-catalase (which degrades hydrogen peroxide). Thus, genetic and pharmacological evidence suggests a major role for glutathione peroxidase-1 and hydrogen peroxide in Ang II-induced effects on vascular function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。