Background
Regulatory T cell (Treg) therapy is considered an alternative approach to induce tolerance in transplantation. If successful, this therapy may have implications on immunosuppression minimization/withdrawal to reduce drug-induced toxicity in patients. The
Conclusions
A distinct pattern of mTOR inhibition by AZD, compared with RAPA, induced mitochondrial stress response and dysfunction, impaired autophagy, and disrupted cellular bioenergetics, resulting in the loss of proliferative potential and suppressive function of Treg cells.
Methods
Primary human Treg cells were isolated from leukapheresis product. Cell viability, expansion rates, suppressive function, autophagy, mitochondrial unfolded protein response (mitoUPR), and cell metabolic profile were assessed.
Results
We observed a stronger inhibition of the mTORC2 signaling pathway and downstream events triggered by Interleukin 2 (IL2)-receptor in AZD8055-treated cells compared with those treated with RAPA. AZD8055 induced progressive metabolic changes in mitochondrial respiration and glycolytic pathways that disrupted the long-term expansion and suppressive function of Tregs. Unlike RAPA, AZD8055 treatment impaired autophagy and enhanced the mitoUPR cell stress response pathway. Conclusions: A distinct pattern of mTOR inhibition by AZD, compared with RAPA, induced mitochondrial stress response and dysfunction, impaired autophagy, and disrupted cellular bioenergetics, resulting in the loss of proliferative potential and suppressive function of Treg cells.
