D-glucose overflow metabolism in an evolutionary engineered high-performance D-xylose consuming Saccharomyces cerevisiae strain

进化设计的高性能 D-木糖消耗酿酒酵母菌株中的 D-葡萄糖溢流代谢

阅读:8
作者:Jeroen G Nijland, Hyun Yong Shin, Eleonora Dore, Donny Rudinatha, Paul P de Waal, Arnold J M Driessen

Abstract

Co-consumption of D-xylose and D-glucose by Saccharomyces cerevisiae is essential for cost-efficient cellulosic bioethanol production. There is a need for improved sugar conversion rates to minimize fermentation times. Previously, we have employed evolutionary engineering to enhance D-xylose transport and metabolism in the presence of D-glucose in a xylose-fermenting S. cerevisiae strain devoid of hexokinases. Re-introduction of Hxk2 in the high performance xylose-consuming strains restored D-glucose utilization during D-xylose/D-glucose co-metabolism, but at rates lower than the non-evolved strain. In the absence of D-xylose, D-glucose consumption was similar to the parental strain. The evolved strains accumulated trehalose-6-phosphate during sugar co-metabolism, and showed an increased expression of trehalose pathway genes. Upon the deletion of TSL1, trehalose-6-phosphate levels were decreased and D-glucose consumption and growth on mixed sugars was improved. The data suggest that D-glucose/D-xylose co-consumption in high-performance D-xylose consuming strains causes the glycolytic flux to saturate. Excess D-glucose is phosphorylated enters the trehalose pathway resulting in glucose recycling and energy dissipation, accumulation of trehalose-6-phosphate which inhibits the hexokinase activity, and release of trehalose into the medium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。