The dasABC gene cluster, adjacent to dasR, encodes a novel ABC transporter for the uptake of N,N'-diacetylchitobiose in Streptomyces coelicolor A3(2)

dasABC 基因簇与 dasR 相邻,编码一种新型 ABC 转运蛋白,用于在天蓝色链霉菌 A3(2) 中摄取 N,N'-二乙酰壳二糖

阅读:6
作者:Akihiro Saito, Tomonori Shinya, Katsushiro Miyamoto, Tomofumi Yokoyama, Hanae Kaku, Eiichi Minami, Naoto Shibuya, Hiroshi Tsujibo, Yoshiho Nagata, Akikazu Ando, Takeshi Fujii, Kiyotaka Miyashita

Abstract

N,N'-Diacetylchitobiose [(GlcNAc)(2)] induces the transcription of chitinase (chi) genes in Streptomyces coelicolor A3(2). Physiological studies showed that (GlcNAc)(2) addition triggered chi expression and increased the rate of (GlcNAc)(2) concentration decline in culture supernatants of mycelia already cultivated with (GlcNAc)(2), suggesting that (GlcNAc)(2) induced the synthesis of its own uptake system. Four open reading frames (SCO0531, SCO0914, SCO2946, and SCO5232) encoding putative sugar-binding proteins of ABC transporters were found in the genome by probing the 12-bp repeat sequence required for regulation of chi transcription. SCO5232, named dasA, showed transcriptional induction by (GlcNAc)(2) and N,N',N'''-triacetylchitotriose [(GlcNAc)(3)]. Surface plasmon resonance analysis showed that recombinant DasA protein exhibited the highest affinity for (GlcNAc)(2) (equilibrium dissociation constant [K(D)] = 3.22 x 10(-8)). In the dasA-null mutant, the rate of decline of the (GlcNAc)(2) concentration in the culture supernatant was about 25% of that in strain M145. The in vitro and in vivo data clearly demonstrated that dasA is involved in (GlcNAc)(2) uptake. Upstream and downstream of dasA, the transcriptional regulator gene (dasR) and two putative integral membrane protein genes (dasBC) are located in the opposite and same orientations, respectively. The expression of dasR and dasB, which seemed independent of dasA transcription, was also induced by (GlcNAc)(2) and (GlcNAc)(3).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。