Noninvasive virtual biopsy using micro-registered optical coherence tomography (OCT) in human subjects

使用微配准光学相干断层扫描 (OCT) 对人体进行无创虚拟活检

阅读:8
作者:Yonatan Winetraub, Aidan Van Vleck, Edwin Yuan, Itamar Terem, Jinjing Zhao, Caroline Yu, Warren Chan, Hanh Do, Saba Shevidi, Maiya Mao, Jacqueline Yu, Megan Hong, Erick Blankenberg, Kerri E Rieger, Steven Chu, Sumaira Aasi, Kavita Y Sarin, Adam de la Zerda0

Abstract

Histological hematoxylin and eosin-stained (H&E) tissue sections are used as the gold standard for pathologic detection of cancer, tumor margin detection, and disease diagnosis. Producing H&E sections, however, is invasive and time-consuming. While deep learning has shown promise in virtual staining of unstained tissue slides, true virtual biopsy requires staining of images taken from intact tissue. In this work, we developed a micron-accuracy coregistration method [micro-registered optical coherence tomography (OCT)] that can take a two-dimensional (2D) H&E slide and find the exact corresponding section in a 3D OCT image taken from the original fresh tissue. We trained a conditional generative adversarial network using the paired dataset and showed high-fidelity conversion of noninvasive OCT images to virtually stained H&E slices in both 2D and 3D. Applying these trained neural networks to in vivo OCT images should enable physicians to readily incorporate OCT imaging into their clinical practice, reducing the number of unnecessary biopsy procedures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。