Molecular characterization of Plasmodium falciparum uracil-DNA glycosylase and its potential as a new anti-malarial drug target

恶性疟原虫尿嘧啶DNA糖基化酶的分子表征及其作为抗疟新药物靶点的潜力

阅读:8
作者:Thidarat Suksangpleng, Ubolsree Leartsakulpanich, Saengduen Moonsom, Saranya Siribal, Usa Boonyuen, George E Wright, Porntip Chavalitshewinkoon-Petmitr

Background

Based on resistance of currently used anti-malarials, a new anti-malarial drug target against Plasmodium falciparum is urgently needed. Damaged DNA cannot be transcribed without prior DNA repair; therefore, uracil-DNA glycosylase, playing an important role in base excision repair, may act as a candidate for a new anti-malarial drug target.

Conclusions

The recombinant PfUDG was expressed, characterized and compared to partially purified native PfUDG. Their characteristics were not significantly different. PfUDG differs from human enzyme in its size and predicted amino acid sequence. Two uracil derivatives inhibited PfUDG and parasite growth; however, only one non-cytotoxic compound was found. Therefore, this selective compound can act as a lead compound for anti-malarial development in the future.

Methods

Initially, the native PfUDG from parasite crude extract was partially purified using two columns, and the glycosylase activity was monitored. The existence of malarial UDG activity prompted the recombinant expression of PfUDG for further characterization. The PfUDG from chloroquine and pyrimethamine resistant P. falciparum strain K1 was amplified, cloned into the expression vector, and expressed in Escherichia coli. The recombinant PfUDG was analysed by SDS-PAGE and identified by LC-MS/MS. The three dimensional structure was modelled. Biochemical properties were characterized. Inhibitory effects of 12 uracil-derivatives on PfUDG activity were investigated. Inhibition of parasite growth was determined in vitro using SYBR Green I and compared with

Results

The native PfUDG was partially purified with a specific activity of 1,811.7 units/mg (113.2 fold purification). After cloning of 966-bp PCR product, the 40-kDa hexa-histidine tagged PfUDG was expressed and identified. The amino acid sequence of PfUDG showed only 24.8% similarity compared with the human enzyme. The biochemical characteristics of PfUDGs were quite similar. They were inhibited by uracil glycosylase inhibitor protein as found in other organisms. Interestingly, recombinant PfUDG was inhibited by two uracil-derived compounds; 1-methoxyethyl-6-(p-n-octylanilino)uracil (IC50 of 16.75 μM) and 6-(phenylhydrazino)uracil (IC50 of 77.5 μM). Both compounds also inhibited parasite growth with IC50s of 15.6 and 12.8 μM, respectively. Moreover, 1-methoxyethyl-6-(p-n-octylanilino)uracil was not toxic to HepG2 cells, with IC50 of > 160 μM while 6-(phenylhydrazino)uracil exhibited cytoxicity, with IC50 of 27.5 μM. Conclusions: The recombinant PfUDG was expressed, characterized and compared to partially purified native PfUDG. Their characteristics were not significantly different. PfUDG differs from human enzyme in its size and predicted amino acid sequence. Two uracil derivatives inhibited PfUDG and parasite growth; however, only one non-cytotoxic compound was found. Therefore, this selective compound can act as a lead compound for anti-malarial development in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。