Alginate@ZnCO2O4 for efficient peroxymonosulfate activation towards effective rhodamine B degradation: optimization using response surface methodology

海藻酸盐@ZnCO2O4 可有效活化过氧单硫酸盐,从而有效降解罗丹明 B:使用响应面法进行优化

阅读:7
作者:Badr-Eddine Channab, Mohamed El Ouardi, Salah Eddine Marrane, Omar Ait Layachi, Ayoub El Idrissi, Salaheddine Farsad, Driss Mazkad, Amal BaQais, Mohammed Lasri, Hassan Ait Ahsaine

Abstract

A facile chemical procedure was utilized to produce an effective peroxy-monosulfate (PMS) activator, namely ZnCo2O4/alginate. To enhance the degradation efficiency of Rhodamine B (RhB), a novel response surface methodology (RSM) based on the Box-Behnken Design (BBD) method was employed. Physical and chemical properties of each catalyst (ZnCo2O4 and ZnCo2O4/alginate) were characterized using several techniques, such as FTIR, TGA, XRD, SEM, and TEM. By employing BBD-RSM with a quadratic statistical model and ANOVA analysis, the optimal conditions for RhB decomposition were mathematically determined, based on four parameters including catalyst dose, PMS dose, RhB concentration, and reaction time. The optimal conditions were achieved at a PMS dose of 1 g l-1, a catalyst dose of 1 g l-1, a dye concentration of 25 mg l-1, and a time of 40 min, with a RhB decomposition efficacy of 98%. The ZnCo2O4/alginate catalyst displayed remarkable stability and reusability, as demonstrated by recycling tests. Additionally, quenching tests confirmed that SO4˙-/OH˙ radicals played a crucial role in the RhB decomposition process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。