Effect of Aging on Physicochemical Properties and Size Distribution of PET Microplastic: Influence on Adsorption of Diclofenac and Toxicity Assessment

老化对 PET 微塑料物理化学性质和尺寸分布的影响:对双氯芬酸吸附的影响和毒性评估

阅读:4
作者:Josipa Papac Zjačić, Stefani Tonković, Anamarija Pulitika, Zvonimir Katančić, Marin Kovačić, Hrvoje Kušić, Zlata Hrnjak Murgić, Ana Lončarić Božić

Abstract

Microplastics (MPs) are detected in the water, sediments, as well as biota, mainly as a consequence of the degradation of plastic products/waste under environmental conditions. Due to their potentially harmful effects on ecosystems and organisms, MPs are regarded as emerging pollutants. The highly problematic aspect of MPs is their interaction with organic and inorganic pollutants; MPs can act as vectors for their further transport in the environment. The objective of this study was to investigate the effects of ageing on the changes in physicochemical properties and size distribution of polyethylene terephthalate (PET), as well as to investigate the adsorption capacity of pristine and aged PET MPs, using pharmaceutical diclofenac (DCF) as a model organic pollutant. An ecotoxicity assessment of such samples was performed. Characterization of the PET samples (bottles and films) was carried out to detect the thermooxidative aging effects. The influence of the temperature and MP dosage on the extent of adsorption of DCF was elucidated by employing an empirical modeling approach using the response surface methodology (RSM). Aquatic toxicity was investigated by examining the green microalgae Pseudokirchneriella subcapitata. It was found that the thermooxidative ageing process resulted in mild surface changes in PET MPs, which were reflected in changes in hydrophobicity, the amount of amorphous phase, and the particle size distribution. The fractions of the particle size distribution in the range 100-500 μm for aged PET are higher due to the increase in amorphous phase. The proposed mechanisms of interactions between DCF and PET MPs are hydrophobic and π-π interactions as well as hydrogen bonding. RSM revealed that the adsorption favors low temperatures and low dosages of MP. The combination of MPs and DCF exhibited higher toxicity than the individual components.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。