Tannic acid attenuates vascular calcification-induced proximal tubular cells damage through paracrine signaling

单宁酸通过旁分泌信号减轻血管钙化引起的近端小管细胞损伤

阅读:6
作者:Eugenia Awuah Boadi, Samuel Shin, Bidhan C Bandyopadhyay

Abstract

Vascular calcification is common in chronic kidney disease; however, the extent to which such condition can affect the renal microvasculature and the neighboring cell types is unclear. Our induced-calcification model in renal proximal tubular (PT) cells exhibited endoplasmic reticulum (ER) stress and oxidative damage, leading to apoptosis. Here, we utilized such calcification in mouse vascular smooth muscle (MOVAS-1) cells as a vascular calcification model, because it exhibited reactive oxygen species (ROS) generation, ER and oxidative stress, inflammatory, and apoptotic gene expressions. To demonstrate whether the vascular calcification condition can dictate the function of the adjacent PT cell layer, we utilized a Transwell multilayer culture system by combining those MOVAS-1 cells in the bottom chamber and polarized PT cells in the upper chamber to show the dimensional cross-signaling effect. Interestingly, calcification of MOVAS-1 cells, in this co-culture, induced H2O2 and lactate dehydrogenase (LDH) release leading to store-operated Ca2+ entry, ROS generation, and activation of oxidative, inflammatory, and apoptotic gene expressions in PT cells through paracrine signaling. Interestingly, application of tannic acid (TA) to either calcified MOVAS-1 or uncalcified PT cells diminished such detrimental pathway activation. Furthermore, the TA-mediated protection was much higher in the PT cells when applied on the calcified MOVAS-1 cells, and the delayed the pathological effects in neighboring PT cells can well be via paracrine signaling. Together, these results provide evidence of vascular calcification-induced PT cell damage, and the protective role of TA in preventing such pathological consequences, which can potentially be used as a nephroprotective remedy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。