Loss of metabotropic glutamate receptor 2 escalates alcohol consumption

代谢型谷氨酸受体 2 的缺失导致酒精消费量增加

阅读:5
作者:Zhifeng Zhou, Camilla Karlsson, Tiebing Liang, Wei Xiong, Mitsuru Kimura, Jenica D Tapocik, Qiaoping Yuan, Estelle Barbier, Austin Feng, Meghan Flanigan, Eric Augier, Mary-Anne Enoch, Colin A Hodgkinson, Pei-Hong Shen, David M Lovinger, Howard J Edenberg, Markus Heilig, David Goldman

Abstract

Identification of genes influencing complex traits is hampered by genetic heterogeneity, the modest effect size of many alleles, and the likely involvement of rare and uncommon alleles. Etiologic complexity can be simplified in model organisms. By genomic sequencing, linkage analysis, and functional validation, we identified that genetic variation of Grm2, which encodes metabotropic glutamate receptor 2 (mGluR2), alters alcohol preference in animal models. Selectively bred alcohol-preferring (P) rats are homozygous for a Grm2 stop codon (Grm2 *407) that leads to largely uncompensated loss of mGluR2. mGluR2 receptor expression was absent, synaptic glutamate transmission was impaired, and expression of genes involved in synaptic function was altered. Grm2 *407 was linked to increased alcohol consumption and preference in F2 rats generated by intercrossing inbred P and nonpreferring rats. Pharmacologic blockade of mGluR2 escalated alcohol self-administration in Wistar rats, the parental strain of P and nonpreferring rats. The causal role of mGluR2 in altered alcohol preference was further supported by elevated alcohol consumption in Grm2 (-/-) mice. Together, these data point to mGluR2 as an origin of alcohol preference and a potential therapeutic target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。