Microbial community shifts reflect losses of native soil carbon with pyrogenic and fresh organic matter additions and are greatest in low-carbon soils

微生物群落的变化反映了土壤原生碳随着热解和新鲜有机物的加入而损失,在低碳土壤中变化最大

阅读:7
作者:Thea Whitman, Silene DeCiucies, Kelly Hanley, Akio Enders, Jamie Woolet, Johannes Lehmann

Abstract

Soil organic carbon (SOC) plays an important role in regulating global climate change, carbon and nutrient cycling in soils, and soil moisture. Organic matter (OM) additions to soils can affect the rate at which SOC is mineralized by microbes, with potentially important effects on SOC stocks. Understanding how pyrogenic organic matter (PyOM) affects the cycling of native SOC (nSOC) and the soil microbes responsible for these effects is important for fire-affected ecosystems as well as for biochar-amended systems. We used an incubation trial with five different soils from National Ecological Observatory Network sites across the US and 13C-labelled 350°C corn stover PyOM and fresh corn stover OM to trace nSOC-derived CO2 emissions with and without PyOM and OM amendments. We used high-throughput sequencing of rRNA genes to characterize bacterial, archaeal, and fungal communities and their response to PyOM and OM in soils that were previously stored at -80°C. We found that the effects of amendments on nSOC-derived CO2 reflected the unamended soil C status, where relative increases in C mineralization were greatest in low-C soils. OM additions produced much greater effects on nSOC-CO2 emissions than PyOM additions. Furthermore, the magnitude of microbial community composition change mirrored the magnitude of increases in nSOC-CO2, indicating a specific subset of microbes were likely responsible for the observed changes in nSOC mineralization. However, PyOM responders differed across soils and did not necessarily reflect a common "charosphere". Overall, this study suggests that soils that already have low SOC may be particularly vulnerable to short-term increases in SOC loss with OM or PyOM additions.Importance Soil organic matter (SOM) has an important role in global climate change, carbon and nutrient cycling in soils, and soil moisture dynamics. Understanding the processes that affect SOM stocks is important for managing these functions. Recently, understanding how fire-affected organic matter (or "pyrogenic" organic matter (PyOM)) affects existing SOM stocks has become increasingly important, both due to changing fire regimes, and to interest in "biochar" - pyrogenic organic matter that is produced intentionally for carbon management or as an agricultural soil amendment. We found that soils with less SOM were more prone to increased losses with PyOM (and fresh organic matter) additions, and that soil microbial communities changed more in soils that also had greater SOM losses with PyOM additions. This suggests that soils that already have low SOM content may be particularly vulnerable to short-term increases in SOM loss, and that a subset of the soil microbial community is likely responsible for these effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。