Selenium Ameliorates Acetaminophen-Induced Oxidative Stress via MAPK and Nrf2 Pathways in Mice

硒通过 MAPK 和 Nrf2 通路改善小鼠对乙酰氨基酚诱导的氧化应激

阅读:7
作者:Mylanayakanahosahalli Chandrashekar Indumathi, Kamatam Swetha, Kandahalli Venkataranganayaka Abhilasha, Shiva Siddappa, Shivamadhaiah Manjula Kumar, Govinda Keerthi Prasad, Chu-Huang Chen, Gopal Kedihithlu Marathe

Abstract

Overdose of acetaminophen (paracetamol), a widely used non-prescriptive analgesic and antipyretic medication, is one of the main causes of drug-induced acute liver failure around the world. Oxidative stress contributes to this hepatotoxicity. Antioxidants are known to protect the liver from oxidative stress. Selenium, a potent antioxidant, is a commonly used micronutrient. Here, we evaluated the protective effect of selenium on acetaminophen-induced hepatotoxicity. Treating Wistar albino mice with sodium selenite (1 mg/kg) before or after inducing hepatotoxicity with acetaminophen (150 mg/kg) significantly reduced the levels of liver injury biomarkers such as serum glutamate oxaloacetate transaminase and serum glutamate pyruvate transaminase. In addition, selenium-treated mice showed decreased levels of oxidative stress markers such as protein carbonyls and myeloperoxidase. Acetaminophen treatment stimulated all three mitogen-activated protein kinases (MAPKs) and Keap1 and decreased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 in liver and in isolated mouse peritoneal macrophages, which was reversed by selenium treatment. Our findings suggest that the reactive oxygen species-mediated Nrf2 and MAPK pathways are critical players in acetaminophen-induced hepatotoxicity. These key findings offer an alternative therapeutic target for addressing acetaminophen-induced hepatotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。