Acquisition of estrogen independence induces TOB1-related mechanisms supporting breast cancer cell proliferation

获得雌激素独立性可诱导支持乳腺癌细胞增殖的 TOB1 相关机制

阅读:4
作者:Y-W Zhang, R E Nasto, R Varghese, S A Jablonski, I G Serebriiskii, R Surana, V S Calvert, I Bebu, J Murray, L Jin, M Johnson, R Riggins, H Ressom, E Petricoin, R Clarke, E A Golemis, L M Weiner

Abstract

Resistance to therapies targeting the estrogen pathway remains a challenge in the treatment of estrogen receptor-positive breast cancer. To address this challenge, a systems biology approach was used. A library of small interfering RNAs targeting an estrogen receptor (ER)- and aromatase-centered network identified 46 genes that are dispensable in estrogen-dependent MCF7 cells, but are selectively required for the survival of estrogen-independent MCF7-derived cells and multiple additional estrogen-independent breast cancer cell lines. Integration of this information identified a tumor suppressor gene TOB1 as a critical determinant of estrogen-independent ER-positive breast cell survival. Depletion of TOB1 selectively promoted G1 phase arrest and sensitivity to AKT and mammalian target of rapmycin (mTOR) inhibitors in estrogen-independent cells but not in estrogen-dependent cells. Phosphoproteomic profiles from reverse-phase protein array analysis supported by mRNA profiling identified a significant signaling network reprogramming by TOB1 that differed in estrogen-sensitive and estrogen-resistant cell lines. These data support a novel function for TOB1 in mediating survival of estrogen-independent breast cancers. These studies also provide evidence for combining TOB1 inhibition and AKT/mTOR inhibition as a therapeutic strategy, with potential translational significance for the management of patients with ER-positive breast cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。