Predicting HLA genotypes using unphased and flanking single-nucleotide polymorphisms in Han Chinese population

利用非相位和侧翼单核苷酸多态性预测中国汉族人群的 HLA 基因型

阅读:3
作者:Ai-Ru Hsieh, Su-Wei Chang, Pei-Lung Chen, Chen-Chung Chu, Ching-Lin Hsiao, Wei-Shiung Yang, Chien-Ching Chang, Jer-Yuarn Wu, Yuan-Tsong Chen, Tien-Chun Chang, Cathy Sj Fann

Background

Genetic variation associated with human leukocyte antigen (HLA) genes has immunological functions and is associated with autoimmune diseases. To date, large-scale studies involving classical HLA genes have been limited by time-consuming and expensive HLA-typing technologies. To reduce these costs, single-nucleotide polymorphisms (SNPs) have been used to predict HLA-allele types. Although HLA allelic distributions differ among populations, most prediction model of HLA genes are based on Caucasian samples, with few reported studies involving non-Caucasians.

Conclusions

SNP data from the HapMap Project are about five times more dense than commercially available genotype chip data. Using chips to genotype our samples, however, only reduced the accuracy of our HLA predictions by only ~3%, while saving a great deal of time and expense. We demonstrated that classical HLA alleles can be predicted from SNP genotype data with a high level of accuracy (80.37% (HLA-B) ~95.79% (HLA-DQB1)) in a Han Chinese population. This finding offers new opportunities for researchers in obtaining HLA genotypes via prediction using their already existing chip datasets. Since the genetic variation structure (e.g. SNP, HLA, Linkage disequilibrium) is different between Han Chinese and Caucasians, and has strong impact in building prediction models for HLA genes, our findings emphasize the importance of building ethnic-specific models when analyzing human populations.

Results

Our sample consisted of 437 Han Chinese with Affymetrix 5.0 and Illumina 550 K SNPs, of whom 214 also had data on Affymetrix 6.0 SNPs. All individuals had HLA typings at a 4-digit resolution. Using these data, we have built prediction model of HLA genes that are specific for a Han Chinese population. To optimize our prediction model of HLA genes, we analyzed a number of critical parameters, including flanking-region size, genotyping platform, and imputation. Predictive accuracies generally increased both with sample size and SNP density. Conclusions: SNP data from the HapMap Project are about five times more dense than commercially available genotype chip data. Using chips to genotype our samples, however, only reduced the accuracy of our HLA predictions by only ~3%, while saving a great deal of time and expense. We demonstrated that classical HLA alleles can be predicted from SNP genotype data with a high level of accuracy (80.37% (HLA-B) ~95.79% (HLA-DQB1)) in a Han Chinese population. This finding offers new opportunities for researchers in obtaining HLA genotypes via prediction using their already existing chip datasets. Since the genetic variation structure (e.g. SNP, HLA, Linkage disequilibrium) is different between Han Chinese and Caucasians, and has strong impact in building prediction models for HLA genes, our findings emphasize the importance of building ethnic-specific models when analyzing human populations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。