Human airway construct model is suitable for studying transcriptome changes associated with indoor air particulate matter toxicity

人类气道构建模型适用于研究与室内空气颗粒物毒性相关的转录组变化

阅读:9
作者:Maria-Elisa Nordberg, Martin Täubel, Pasi I Jalava, Kelly BéruBé, Arja Tervahauta, Anne Hyvärinen, Kati Huttunen

Abstract

In vitro models mimicking the human respiratory system are essential when investigating the toxicological effects of inhaled indoor air particulate matter (PM). We present a pulmonary cell culture model for studying indoor air PM toxicity. We exposed normal human bronchial epithelial cells, grown on semi-permeable cell culture membranes, to four doses of indoor air PM in the air-liquid interface. We analyzed the chemokine interleukin-8 concentration from the cell culture medium, protein concentration from the apical wash, measured tissue electrical resistance, and imaged airway constructs using light and transmission electron microscopy. We sequenced RNA using a targeted RNA toxicology panel for 386 genes associated with toxicological responses. PM was collected from a non-complaint residential environment over 1 week. Sample collection was concomitant with monitoring size-segregated PM counts and determination of microbial levels and diversity. PM exposure was not acutely toxic for the cells, and we observed up-regulation of 34 genes and down-regulation of 17 genes when compared to blank sampler control exposure. The five most up-regulated genes were related to immunotoxicity. Despite indications of incomplete cell differentiation, this model enabled the comparison of a toxicological transcriptome associated with indoor air PM exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。