Identification of candidate target genes for endometrial cancer, such as ANO1, using weighted gene co-expression network analysis

使用加权基因共表达网络分析识别子宫内膜癌的候选靶基因,例如 ANO1

阅读:5
作者:Fangzhen Wang, Bo Wang, Junbei Long, Fangmin Wang, Ping Wu

Abstract

Network-based systems biology has become an important method for analysis of high-throughput gene expression data and gene function mining. The aim of the present study was to implement a weighted gene co-expression network analysis to screen genes that were significantly correlated with the clinical phenotype of endometrial cancer based on data from The Cancer Genome Atlas. By using the function 'pickSoftThreshold' in R software, the optimum soft thresholding power was determined to be 4. Subsequently, a total of 2,414 expressed genes were identified among 19,791 genes from 506 samples, which were divided into 24 modules according to the different expression patterns. After analyzing the correlation between the gene expression in these 24 modules and the clinical phenotype of endometrial cancer, the anoctamin 1 (ANO1) gene was selected for further analysis. The Chi-squared test indicated that ANO1 was significantly associated with age (P=0.047), histological type (P<0.001), clinical stage (P<0.001), pathological grade (P<0.001) and positive peritoneal washing (P=0.001) of endometrial carcinoma. Kaplan-Meier survival analysis revealed that a high level of ANO1 was significantly associated with a good prognosis for endometrial cancer patients. Univariate and multivariate Cox regression analysis indicated that ANO1 is an independent prognostic factor in endometrial cancer. Further characterization of the most relevant module containing ANO1 with the database for annotation, visualization and integrated discovery tool suggested that ANO1 is involved in various pathways, including metabolic pathways. The present study suggests that ANO1 may be a potential marker for good prognosis in endometrial cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。