Diversifying selection and functional analysis of interleukin-4 suggests antagonism-driven evolution at receptor-binding interfaces

白细胞介素-4 的多样化选择和功能分析表明受体结合界面的拮抗作用驱动进化

阅读:5
作者:Madoka Koyanagi, Julie A Kerns, Linda Chung, Yan Zhang, Scott Brown, Tudor Moldoveanu, Harmit S Malik, Mark Bix

Background

Interleukin-4 (IL4) is a secreted immunoregulatory cytokine critically involved in host protection from parasitic helminths 1. Reasoning that helminths may have evolved mechanisms to antagonize IL4 to maximize their dispersal, we explored mammalian IL4 evolution.

Conclusions

Our results - reminiscent of clustered positively selected sites revealing functionally important residues at host-virus interaction interfaces - are consistent with IL4 having evolved to avoid recurrent pathogen antagonism, while maintaining the capacity to bind and signal through its cognate receptor. This work exposes what may be a general feature of evolutionary conflicts fought by pathogen antagonists at host protein-protein interaction interfaces involved in immune signaling: the emergence of receptor-binding ligand epitopes capable of buffering amino acid variation.

Results

This analysis revealed evidence of diversifying selection at 15 residues, clustered in epitopes responsible for IL4 binding to its Type I and Type II receptors. Such a striking signature of selective pressure suggested either recurrent episodes of pathogen antagonism or ligand/receptor co-evolution. To test the latter possibility, we performed detailed functional analysis of IL4 allotypes expressed by Mus musculus musculus and Mus musculus castaneus, which happen to differ at 5 residues (including three at positively selected sites) in and adjacent to the site 1 epitope that binds the IL4Ralpha subunit shared by the Type I and Type II IL4 receptors. We show that this intra-species variation affects the ability of IL4 neither to bind IL4 receptor alpha (IL4Ralpha) nor to signal biological responses through its Type I receptor. Conclusions: Our results - reminiscent of clustered positively selected sites revealing functionally important residues at host-virus interaction interfaces - are consistent with IL4 having evolved to avoid recurrent pathogen antagonism, while maintaining the capacity to bind and signal through its cognate receptor. This work exposes what may be a general feature of evolutionary conflicts fought by pathogen antagonists at host protein-protein interaction interfaces involved in immune signaling: the emergence of receptor-binding ligand epitopes capable of buffering amino acid variation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。