Physiological and transcriptomic analysis reveals the potential mechanism of Morinda officinalis How in response to freezing stress

生理和转录组分析揭示巴戟天应对冻害的潜在机制

阅读:6
作者:Zhenhua Luo, Xiaoying Che, Panpan Han, Zien Chen, Zeyu Chen, Jinfang Chen, Sishi Xiang, Ping Ding

Background

Morinda officinalis How (MO) is a vine shrub distributed in tropical and subtropical regions, known as one of the "Four Southern Herbal Medicines" in China. The unclear responsive mechanism by which MO adapt to freezing stress limits progress in molecular breeding for MO freezing tolerance.

Conclusions

Our results provide an overall view of the dynamic changes in physiology and insight into the molecular regulation mechanisms of MO in response to freezing stress. This study will lay a foundation for freezing tolerance molecular breeding and improving the quality of MO.

Results

In this study, morphological, physiological and microstructure changes in MO exposed to -2℃ for 0 h, 3 h, 8 h and 24 h were comprehensively characterized. The results showed that freezing stress caused seedling dehydration, palisade cell and spongy mesophyll destruction. A significant increase in the content of proline, soluble protein and soluble sugars, as well as the activity of superoxide dismutase and peroxidase was observed. Subsequently, we analyzed the transcriptomic changes of MO leaves at different times under freezing treatment by RNA-seq. A total of 24,498 unigenes were annotated and 3252 unigenes were identified as differentially expressed genes (DEGs). Most of these DEGs were annotated in starch and sucrose metabolism, plant hormone signal transduction and MAPK signaling pathways. Family Enrichment analysis showed that the glucosyl/glucuronosyl transferases, oxidoreductase, chlorophyll a/b binding protein and calcium binding protein families were significantly enriched. We also characterized 7 types of transcription factors responding to freezing stress, among which the most abundant family was the MYBs, followed by the AP2/ERFs and NACs. Furthermore, 10 DEGs were selected for qRT-PCR analysis, which validated the reliability and accuracy of RNA-seq data. Conclusions: Our results provide an overall view of the dynamic changes in physiology and insight into the molecular regulation mechanisms of MO in response to freezing stress. This study will lay a foundation for freezing tolerance molecular breeding and improving the quality of MO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。