Uniformly dispersed platinum nanoparticles over nitrogen-doped reduced graphene oxide as an efficient electrocatalyst for the oxygen reduction reaction

氮掺杂还原氧化石墨烯上均匀分散的铂纳米粒子作为氧还原反应的有效电催化剂

阅读:6
作者:Xiaohong Chen, Zhiyong Xue, Yafei Zheng, Xundao Liu, Yongming Zhang

Abstract

Oxygen reduction reaction (ORR) with efficient activity and stability is significant for fuel cells. Herein, platinum (Pt) nanoparticles dispersed on nitrogen-doped reduced graphene oxide (N-rGO) were prepared by a hydrothermal and carbonized approach for the electrocatalysis of ORR. Polyvinylpyrrolidone plays a significant role in the reduction and dispersion of platinum particles (about 2 nm). The obtained Pt-N-rGO hybrids exhibited superior activity with an electron transfer number of ∼4.0, onset potential 0.90 eV of ORR, good stability and methanol tolerance in alkaline media. These results reveal the interactions between Pt-N-rGO and oxygen molecules, which may represent an oxygen modified growth in catalyst preparation. The excellent electrocatalysis may lead to the decreased consumption of expensive Pt and open up new opportunities for applications in lithium air batteries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。