(-)-Epigallocatechin-3-gallate protects PC12 cells against corticosterone-induced neurotoxicity via the hedgehog signaling pathway

(-)-表没食子儿茶素没食子酸酯通过 Hedgehog 信号通路保护 PC12 细胞免受皮质酮诱导的神经毒性

阅读:4
作者:Sha Feng, Jue Liu, Biao Cheng, Aiping Deng, Hong Zhang

Abstract

It has been acknowledged that environmental stress is a risk factor for developing mental disorders. Chronic stress may contribute to the hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis and a sustained rise in the levels of glucocorticoids (GCs). A high concentration of corticosterone (CORT) damages neuronal PC12 cells. It has been reported that (-)-Epigallocatechin-3-gallate (EGCG), a major component of green tea, exhibits neuroprotective activity. However, the protective effect of EGCG on neuronal cells injured by CORT remains to be elucidated. The present study aimed to identify the effects of EGCG on CORT-injured neuronal PC12 cells and its associated mechanisms of action. CORT-injured PC12 cells were pretreated with EGCG with or without cyclopamine. Cell viability was assessed using an MTT assay, changes in cell morphology were observed using phase-contrast microscopy, cellular apoptosis was assessed by Hoechst 33342 staining, cell proliferation was measured using a cell counting kit-8 assay, mRNA levels were measured by reverse transcription-quantitative polymerase chain reaction and protein expression was assessed using western blot analysis. The current study demonstrated that exposure to high concentrations of CORT induced cytotoxicity and downregulated the Sonic hedgehog pathway (Shh) in PC12 cells. These effects were attenuated by EGCG. However, the EGCG-mediated neuroprotective effects, as well as upregulation of the Shh pathway were all attenuated by the Shh signaling inhibitor cyclopamine. These results indicate that EGCG protects PC12 cells from CORT-induced neurotoxicity via activation of the Shh signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。