Evaluation of Machine Learning Classifiers to Predict Compound Mechanism of Action When Transferred across Distinct Cell Lines

评估机器学习分类器预测化合物在不同细胞系间转移时的作用机制

阅读:5
作者:Scott J Warchal, John C Dawson, Neil O Carragher

Abstract

Multiparametric high-content imaging assays have become established to classify cell phenotypes from functional genomic and small-molecule library screening assays. Several groups have implemented machine learning classifiers to predict the mechanism of action of phenotypic hit compounds by comparing the similarity of their high-content phenotypic profiles with a reference library of well-annotated compounds. However, the majority of such examples are restricted to a single cell type often selected because of its suitability for simple image analysis and intuitive segmentation of morphological features. The aim of the current study was to evaluate and compare the performance of a classic ensemble-based tree classifier trained on extracted morphological features and a deep learning classifier using convolutional neural networks (CNNs) trained directly on images from the same dataset to predict compound mechanism of action across a morphologically and genetically distinct cell panel. Our results demonstrate that application of a CNN classifier delivers equivalent accuracy compared with an ensemble-based tree classifier at compound mechanism of action prediction within cell lines. However, our CNN analysis performs worse than an ensemble-based tree classifier when trained on multiple cell lines at predicting compound mechanism of action on an unseen cell line.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。