Conclusions
Higher urinary osteopontin specifically predicts incident chronic kidney disease, while plasma osteopontin specifically predicts cardiovascular death. Our data put forward osteopontin as an important factor in the detrimental interplay between the kidney and the cardiovascular system. The clinical implications, and why plasma and urinary osteopontin mirror different pathologies, remain to be established.
Results
There was no significant cross-sectional correlation between plasma and urinary osteopontin (Spearman ρ = 0.07, p = 0.13). Higher urinary osteopontin, but not plasma osteopontin, was associated with incident chronic kidney disease in multivariable models adjusted for age, cardiovascular risk factors, baseline glomerular filtration rate, urinary albumin/creatinine ratio, and the inflammatory markers interleukin 6 and high-sensitivity C-reactive protein (odds ratio for 1 standard deviation [SD] of urinary osteopontin, 1.42, 95% CI 1.00-2.02, p = 0.048). Conversely, plasma osteopontin, but not urinary osteopontin, was independently associated with cardiovascular death (multivariable hazard ratio per SD increase, 1.35, 95% CI 1.14-1.58, p < 0.001, and 1.00, 95% CI 0.79-1.26, p = 0.99, respectively). The addition of plasma osteopontin to a model with established cardiovascular risk factors significantly increased the C-statistics for the prediction of cardiovascular death (p < 0.002). Conclusions: Higher urinary osteopontin specifically predicts incident chronic kidney disease, while plasma osteopontin specifically predicts cardiovascular death. Our data put forward osteopontin as an important factor in the detrimental interplay between the kidney and the cardiovascular system. The clinical implications, and why plasma and urinary osteopontin mirror different pathologies, remain to be established.
