Tb RAP1 has an unusual duplex DNA binding activity required for its telomere localization and VSG silencing

Tb RAP1 具有不寻常的双链 DNA 结合活性,这是其端粒定位和 VSG 沉默所必需的

阅读:9
作者:Marjia Afrin, Amit Kumar Gaurav, Xian Yang, Xuehua Pan, Yanxiang Zhao, Bibo Li

Abstract

Localization of Repressor Activator Protein 1 (RAP1) to the telomere is essential for its telomeric functions. RAP1 homologs either directly bind the duplex telomere DNA or interact with telomere-binding proteins. We find that Trypanosoma brucei RAP1 relies on a unique double-stranded DNA (dsDNA) binding activity to achieve this goal. T. brucei causes human sleeping sickness and regularly switches its major surface antigen, variant surface glycoprotein (VSG), to evade the host immune response. VSGs are monoallelically expressed from subtelomeres, and TbRAP1 is essential for VSG regulation. We identify dsDNA and single-stranded DNA binding activities in TbRAP1, which require positively charged 737RKRRR741 residues that overlap with TbRAP1's nuclear localization signal in the MybLike domain. Both DNA binding activities are electrostatics-based and sequence nonspecific. The dsDNA binding activity can be substantially diminished by phosphorylation of two 737RKRRR741-adjacent S residues and is essential for TbRAP1's telomere localization, VSG silencing, telomere integrity, and cell proliferation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。