Mechanism and inhibition of saFabI, the enoyl reductase from Staphylococcus aureus

金黄色葡萄球菌烯酰还原酶 saFabI 的作用机制及抑制

阅读:11
作者:Hua Xu, Todd J Sullivan, Jun-ichiro Sekiguchi, Teruo Kirikae, Iwao Ojima, Christopher F Stratton, Weimin Mao, Fernando L Rock, M R K Alley, Francis Johnson, Stephen G Walker, Peter J Tonge

Abstract

Approximately one-third of the world's population carries Staphylococcus aureus. The recent emergence of extreme drug resistant strains that are resistant to the "antibiotic of last resort", vancomycin, has caused a further increase in the pressing need to discover new drugs against this organism. The S. aureus enoyl reductase, saFabI, is a validated target for drug discovery. To drive the development of potent and selective saFabI inhibitors, we have studied the mechanism of the enzyme and analyzed the interaction of saFabI with triclosan and two related diphenyl ether inhibitors. Results from kinetic assays reveal that saFabI is NADPH-dependent, and prefers acyl carrier protein substrates carrying fatty acids with long acyl chains. On the basis of product inhibition studies, we propose that the reaction proceeds via an ordered sequential ternary complex, with the ACP substrate binding first, followed by NADPH. The interaction of NADPH with the enzyme has been further explored by site-directed mutagenesis, and residues R40 and K41 have been shown to be involved in determining the specificity of the enzyme for NADPH compared to NADH. Finally, in preliminary inhibition studies, we have shown that triclosan, 5-ethyl-2-phenoxyphenol (EPP), and 5-chloro-2-phenoxyphenol (CPP) are all nanomolar slow-onset inhibitors of saFabI. These compounds inhibit the growth of S. aureus with MIC values of 0.03-0.06 microg/mL. Upon selection for resistance, three novel safabI mutations, A95V, I193S, and F204S, were identified. Strains containing these mutations had MIC values approximately 100-fold larger than that of the wild-type strain, whereas the purified mutant enzymes had K i values 5-3000-fold larger than that of wild-type saFabI. The increase in both MIC and K i values caused by the mutations supports the proposal that saFabI is the intracellular target for the diphenyl ether-based inhibitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。