Discovery of a single-subunit oligosaccharyltransferase that enables glycosylation of full-length IgG antibodies in Escherichia coli

发现一种能够使大肠杆菌中的全长 IgG 抗体进行糖基化的单亚基寡糖基转移酶

阅读:17
作者:Belen Sotomayor, Thomas C Donahue, Sai Pooja Mahajan, May N Taw, Sophia W Hulbert, Erik J Bidstrup, D Natasha Owitipana, Alexandra Pang, Xu Yang, Souvik Ghosal, Christopher A Alabi, Parastoo Azadi, Jeffrey J Gray, Michael C Jewett, Lai-Xi Wang, Matthew P DeLisa

Abstract

Human immunoglobulin G (IgG) antibodies are one of the most important classes of biotherapeutic agents and undergo glycosylation at the conserved N297 site in the CH2 domain, which is critical for IgG Fc effector functions and anti-inflammatory activity. Hence, technologies for producing authentically glycosylated IgGs are in high demand. While attempts to engineer Escherichia coli for this purpose have been described, they have met limited success due in part to the lack of available oligosaccharyltransferase (OST) enzymes that can install N-linked glycans within the QYNST sequon of the IgG CH2 domain. Here, we identified a previously uncharacterized single-subunit OST (ssOST) from the bacterium Desulfovibrio marinus that exhibited greatly relaxed substrate specificity and, as a result, was able to catalyze glycosylation of native CH2 domains in the context of both a hinge-Fc fragment and a full-length IgG. Although the attached glycans were bacterial in origin, conversion to a homogeneous, asialo complex-type G2 N-glycan at the QYNST sequon of the E. coli-derived hinge-Fc was achieved via chemoenzymatic glycan remodeling. Importantly, the resulting G2-hinge-Fc exhibited strong binding to human FcγRIIIa (CD16a), one of the most potent receptors for eliciting antibody-dependent cellular cytotoxicity (ADCC). Taken together, the discovery of a unique ssOST from D. marinus provides previously unavailable biocatalytic capabilities to the bacterial glycoprotein engineering toolbox and opens the door to using E. coli for the production and glycoengineering of human IgGs and fragments derived thereof.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。