An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials

用于纳米材料探索和优化的人工智能化学合成机器人

阅读:4
作者:Yibin Jiang, Daniel Salley, Abhishek Sharma, Graham Keenan, Margaret Mullin, Leroy Cronin

Abstract

We present an autonomous chemical synthesis robot for the exploration, discovery, and optimization of nanostructures driven by real-time spectroscopic feedback, theory, and machine learning algorithms that control the reaction conditions and allow the selective templating of reactions. This approach allows the transfer of materials as seeds between cycles of exploration, opening the search space like gene transfer in biology. The open-ended exploration of the seed-mediated multistep synthesis of gold nanoparticles (AuNPs) via in-line ultraviolet-visible characterization led to the discovery of five categories of nanoparticles by only performing ca. 1000 experiments in three hierarchically linked chemical spaces. The platform optimized nanostructures with desired optical properties by combining experiments and extinction spectrum simulations to achieve a yield of up to 95%. The synthetic procedure is outputted in a universal format using the chemical description language (χDL) with analytical data to produce a unique digital signature to enable the reproducibility of the synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。