Manganese exposure is cytotoxic and alters dopaminergic and GABAergic neurons within the basal ganglia

锰暴露具有细胞毒性,会改变基底神经节内的多巴胺能和 GABA 能神经元

阅读:5
作者:Gregg D Stanwood, Duncan B Leitch, Valentina Savchenko, Jane Wu, Vanessa A Fitsanakis, Douglas J Anderson, Jeannette N Stankowski, Michael Aschner, BethAnn McLaughlin

Abstract

Manganese is an essential nutrient, integral to proper metabolism of amino acids, proteins and lipids. Excessive environmental exposure to manganese can produce extrapyramidal symptoms similar to those observed in Parkinson's disease (PD). We used in vivo and in vitro models to examine cellular and circuitry alterations induced by manganese exposure. Primary mesencephalic cultures were treated with 10-800 microM manganese chloride which resulted in dramatic changes in the neuronal cytoskeleton even at subtoxic concentrations. Using cultures from mice with red fluorescent protein driven by the tyrosine hydroxylase (TH) promoter, we found that dopaminergic neurons were more susceptible to manganese toxicity. To understand the vulnerability of dopaminergic cells to chronic manganese exposure, mice were given i.p. injections of MnCl(2) for 30 days. We observed a 20% reduction in TH-positive neurons in the substantia nigra pars compacta (SNpc) following manganese treatment. Quantification of Nissl bodies revealed a widespread reduction in SNpc cell numbers. Other areas of the basal ganglia were also altered by manganese as evidenced by the loss of glutamic acid decarboxylase 67 in the striatum. These studies suggest that acute manganese exposure induces cytoskeletal dysfunction prior to degeneration and that chronic manganese exposure results in neurochemical dysfunction with overlapping features to PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。