Induced pluripotent stem cell-conditional medium inhibits H9C2 cardiomyocytes apoptosis via autophagy flux and Wnt/β-catenin pathway

诱导性多能干细胞条件培养基通过自噬通量和Wnt/β-catenin通路抑制H9C2心肌细胞凋亡

阅读:7
作者:Xiaoling Guo, Xiaohong Gu, Sohun Hareshwaree, Xing Rong, Lei Li, Maoping Chu

Abstract

Induced pluripotent stem cell-derived conditioned medium (iPS-CM) could improve cell viability in many types of cells and may be a better alternative for the treatment of myocardial infarction. This study aimed to examine the influence of iPS-CM on anti-apoptosis and the proliferation of H9C2 cardiomyocytes and investigate the underlying mechanisms. H9C2 cardiomyocytes were exposed to 200 μmol/L hydrogen peroxide (H2 O2 ) for 24 hours with or without pre-treatment with iPS-CM. The ratio of apoptotic cells, the loss of mitochondrial membrane potential (△Ψm) and the levels of intracellular reactive oxygen species were analysed by flow cytometric analysis. The expression levels of BCL-2 and BAX proteins were analysed by Western blot. Cell proliferation was assessed using cell cycle and EdU staining assays. To study cell senescence, senescence-associated β-galactosidase (SA-β-gal) staining was conducted. The levels of malondialdehyde, superoxide dismutase and glutathione were also quantified using commercially available enzymatic kits. The results showed that iPS-CM containing basic fibroblast growth factor significantly reduced H2 O2 -induced H9C2 cardiomyocyte apoptosis by activating the autophagy flux pathway, promoted cardiomyocyte proliferation by up-regulating the Wnt/β-catenin pathway and inhibited oxidative stress and cell senescence. In conclusion, iPS-CM effectively enhanced the cell viability of H9C2 cardiomyocytes and could potentially be used to inhibit cardiomyocytes apoptosis to treat myocardial infarction in the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。