Heparin-binding EGF-like growth factor protects intestinal stem cells from injury in a rat model of necrotizing enterocolitis

肝素结合 EGF 样生长因子保护坏死性小肠结肠炎大鼠模型中的肠道干细胞免受损伤

阅读:5
作者:Chun-Liang Chen, Xiaoyi Yu, Iyore O-A James, Hong-yi Zhang, Jingyuan Yang, Andrei Radulescu, Yu Zhou, Gail E Besner

Abstract

Necrotizing enterocolitis (NEC) is an often catastrophic disease that typically affects premature newborns. Although the exact etiology of NEC is uncertain, the disease is associated with formula feeding, bacterial colonization of the gut, hypoxia and hypoperfusion. In light of the pathogenesis of NEC, the integrity and function of the intestinal mucosa has a major defensive role against the initiation of NEC. Various forms of intestinal injury, including NEC, injure the intestinal epithelial cell (IEC) lineages, including the intestinal stem cells (ISCs), thereby disrupting the normal homeostasis needed to maintain gut barrier function. In the current study, we examined the effects of heparin-binding EGF-like growth factor (HB-EGF) administration on enterocytes, goblet cells, neuroendocrine cells and ISCs in a newborn rat model of experimental NEC. We also examined the cytoprotective effects of HB-EGF on ISCs in in vitro cell cultures and in ex vivo crypt-villous organoid cultures. We found that HB-EGF protects all IEC lineages, including ISCs, from injury. We further found that HB-EGF protects isolated ISCs from hypoxic injury in vitro, and promotes ISC activation and survival, and the expansion of crypt transit-amplifying cells, in ex vivo crypt-villous organoid cultures. The protective effects of HB-EGF were dependent on EGF receptor activation, and were mediated via the MEK1/2 and PI3K signaling pathways. These results show that the intestinal cytoprotective effects of HB-EGF are mediated, at least in part, through its ability to protect ISCs from injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。