Mesenchymal Stem Cells Carrying Viral Fusogenic Protein p14 to Treat Solid Tumors by Inducing Cell-Cell Fusion and Immune Activation

携带病毒融合蛋白 p14 的间充质干细胞通过诱导细胞融合和免疫激活来治疗实体肿瘤

阅读:5
作者:Yao Wang, Xunlei Pang, Ruirui Li, Jiuzhou Chen, Chen Wen, Huihuang Zhu, Tingyu Long, Jianjie Li, Lijun Zheng, Youcai Deng, Junnian Zheng, Bo Xu

Background

Chimeric antigen receptor (CAR)-based immune cell therapies attack neighboring cancer cells after receptor recognition but are unable to directly affect distant tumor cells. This limitation may contribute to their inefficiency in treating solid tumors, given the restricted intratumoral infiltration and immunosuppressive tumor microenvironment. Therefore, cell-cell fusion as a cell-killing mechanism might develop a novel cytotherapy aimed at improving the efficacy against solid tumors.

Conclusion

MSC-based cytotherapy carrying viral fusogenic protein in this study kills cancer cells by inducing cell-cell fusion. It has demonstrated definite efficacy in treating solid tumors and is worth considering for clinical development.

Methods

We constructed a fusogenic protein, fusion-associated small transmembrane (FAST) p14 of reptilian reovirus, into cancer cells and mesenchymal stem cells (MSCs), which cocultured with various colon cancer cells and melenoma cells to validate its ability to induce cell fusion and syncytia formation. RNA sequencing, quantitative reverse transcription polymerase chain reaction, and Western blot were performed to elucidate the mechanism of syncytia death. Cell viability assay was employed to assess the killing effects of MSCs carrying the p14 protein (MSCs-p14), which was also identified in the subcutaneous tumor models. Subsequently, the Tet-On system was introduced to enhance the controllability and safety of therapy.

Results

Cancer cells incorporated with fusogenic protein p14 FAST from reovirus fused together to form syncytia and subsequently died through apoptosis and pyroptosis. MSCs-p14 cocultured with different cancer cells and effienctly induced cancer cell fusion and caused widespread cancer cell death in vitro. In mouse tumor models, mMSCs-p14 treatment markedly suppressed tumor growth and also enhanced the activity of natural killer cells and macrophages. Controllability and safety of MSCs-p14 therapy were further improved by introducing the tetracycline-controlled transcriptional system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。