Nestin Forms a Flexible Cytoskeleton by Means of a Huge Tail Domain That Is Reversibly Stretched and Contracted by Weak Forces

Nestin 通过巨大的尾部结构域形成灵活的细胞骨架,该结构域可在弱力作用下可逆地拉伸和收缩

阅读:6
作者:Ayana Yamagishi, Rina Tokuoka, Kazuki Imai, Mei Mizusawa, Moe Susaki, Koki Uchida, Saku T Kijima, Akira Nagasaki, Daijiro Takeshita, Chiaki Yoshikawa, Taro Q P Uyeda, Chikashi Nakamura

Abstract

Nestin is a type VI intermediate filament protein and a well-known neural stem cell marker. It is also expressed in high-grade cancer cells, forming copolymerized filaments with vimentin. We previously showed that nestin inhibits the binding of vimentin's tail domain to actin filaments (AFs) by steric hindrance through its large nestin tail domain (NTD), thereby increasing three-dimensional cytoskeleton network mobility, enhancing cell flexibility, and promoting cancer progression. Further, we found that nestin itself stably binds to AFs via the NTD. We therefore hypothesized that the NTD may form a flexible cytoskeletal structure by extending with weak force. In vitro tensile tests using atomic force microscopy were performed to assess the mechanical properties of NTDs. The C-terminus of the NTD bound AFs by bringing the AFM tip modified with the NTD into contact with the AFs on the substrate. NTDs were elongated to approximately 80% of their maximum length at weak forces < 150 pN. Repeated tensile tests revealed that the NTD refolded quickly and behaved like a soft elastic material. We speculate that nestin stably binds AFs, and the NTD extends with weak force, contracting quickly upon load release. Thereby, nestin would absorb mechanical load and maintain cytoskeletal integrity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。