Distinct roles of protease-activated receptors in signal transduction regulation of endothelial nitric oxide synthase

蛋白酶激活受体在内皮细胞一氧化氮合酶信号转导调控中的不同作用

阅读:6
作者:Hiroyuki Suzuki, Evangeline D Motley, Kunie Eguchi, Akinari Hinoki, Heigoro Shirai, Vabren Watts, Laura N Stemmle, Timothy A Fields, Satoru Eguchi

Abstract

Protease-activated receptors (PARs), such as PAR1 and PAR2, have been implicated in the regulation of endothelial NO production. We hypothesized that PAR1 and PAR2 distinctly regulate the activity of endothelial NO synthase through the selective phosphorylation of a positive regulatory site, Ser(1179), and a negative regulatory site, Thr(497), in bovine aortic endothelial cells. A selective PAR1 ligand, TFLLR, stimulated the phosphorylation of endothelial NO synthase at Thr(497). It had a minimal effect on Ser(1179) phosphorylation. In contrast, a selective PAR2 ligand, SLIGRL, stimulated the phosphorylation of Ser(1179) with no noticeable effect on Thr(497). Thrombin has been shown to transactivate PAR2 through PAR1. Thus, thrombin, as well as a peptide mimicking the PAR1 tethered ligand, TRAP, stimulated phosphorylation of both sites. Also, thrombin and SLIGRL, but not TFLLR, stimulated cGMP production. A G(q) inhibitor blocked thrombin- and SLIGRL-induced Ser(1179) phosphorylation, whereas it enhanced thrombin-induced Thr(497) phosphorylation. In contrast, a G(12/13) inhibitor blocked thrombin- and TFLLR-induced Thr(497) phosphorylation, whereas it enhanced the Ser(1179) phosphorylation. Although a Rho-kinase inhibitor, Y27632, blocked the Thr(497) phosphorylation, other inhibitors that targeted Rho-kinase failed to block TFLLR-induced Thr(497) phosphorylation. These data suggest that PAR1 and PAR2 distinctly regulate endothelial NO synthase phosphorylation and activity through G(12/13) and G(q), respectively, delineating the novel signaling pathways by which the proteases act on protease-activated receptors to potentially modulate endothelial functions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。