Construction of Attenuated Strains for Red-Spotted Grouper Nervous Necrosis Virus (RGNNV) via Reverse Genetic System

利用反向遗传系统构建赤斑石斑鱼神经坏死病毒(RGNNV)减毒株

阅读:5
作者:Yingying Lei, Yu Xiong, Dagang Tao, Tao Wang, Tianlun Chen, Xufei Du, Gang Cao, Jiagang Tu, Jinxia Dai

Abstract

The nervous necrosis virus (NNV) mainly attacks the central nervous system of fish to cause viral nervous necrosis, which is an acute and serious prevalent disease in fish. Among different genotypes of NNV, red-spotted grouper nervous necrosis virus (RGNNV) is the most widely reported, with the highest number of susceptible species. To better understand the pathogenicity of RGNNV, we first developed a reverse genetic system for recombinant RGNNV rescue using B7GG and striped snakehead (SSN-1) cells. Furthermore, we constructed attenuated RGNNV strains rRGNNV-B2-M1 and rRGNNV-B2-M2 with the loss of B2 protein expression, which grew slower and induced less Mx1 expression than that of wild-type RGNNV. Moreover, rRGNNV-B2-M1 and rRGNNV-B2-M2 were less virulent than the wild-type RGNNV. Our study provides a potential tool for further research on the viral protein function, virulence pathogenesis, and vaccine development of RGNNV, which is also a template for the rescue of other fish viruses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。