Improvement of Euglena gracilis Paramylon Production through a Cocultivation Strategy with the Indole-3-Acetic Acid-Producing Bacterium Vibrio natriegens

通过与吲哚-3-乙酸生产菌弧菌共培养提高裸藻淀粉产量

阅读:5
作者:Jee Young Kim, Jeong-Joo Oh, Min Seo Jeon, Gyu-Hyeok Kim, Yoon-E Choi

Abstract

We investigated the putative effects on the growth and paramylon production of Euglena gracilis of cocultivation with Vibrio natriegensE. gracilis heterotrophically cocultivated with V. natriegens displayed significant increases in biomass productivity and paramylon content. In addition, the effects of the bacterial inoculum density and the timing of inoculation on the growth of E. gracilis were examined, to determine the optimal conditions for cocultivation. With the optimal deployment of V. natriegens, biomass productivity and paramylon content were increased by more than 20% and 35%, respectively, compared to those in axenic E. gracilis cultures. Interestingly, indole-3-acetic acid biosynthesized by V. natriegens was responsible for these enhancements of E. gracilis The morphology of cocultured E. gracilis cells was assessed. Paramylon granules extracted from the cocultivation were significantly larger than those from axenic culture. Our study showed that screening for appropriate bacteria and subsequent cocultivation with E. gracilis represented an effective way to enhance biomass and metabolite production.IMPORTANCEEuglena gracilis has attracted special interest due to its ability to excessively accumulate paramylon. Paramylon is a linear β-1,3-glucan polysaccharide that is the principal polymer for energy storage in E. gracilis The polysaccharide features high bioactive functionality in the immune system. This study explored a new method to enhance the production of paramylon by E. gracilis, through cocultivation with the indole-3-acetic acid-producing bacterium Vibrio natriegens The enhanced production was achieved indirectly with the phytohormone-producing bacteria, instead of direct application of the hormone. The knowledge obtained in this study furthers the understanding of the effects of V. natriegens on the growth and physiology of E. gracilis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。