β-arrestin 2 is essential for fluoxetine-mediated promotion of hippocampal neurogenesis in a mouse model of depression

β-arrestin 2 对氟西汀介导的抑郁症小鼠模型中海马神经发生的促进至关重要

阅读:6
作者:Chen-Xin Li #, Ying Zheng #, Hong Zhu, Cheng-Wu Li, Zhang He, Cong Wang, Jian-Hua Ding, Gang Hu, Ming Lu

Abstract

Over the last decade, the roles of β-arrestins in the treatment of neuropsychological diseases have become increasingly appreciated. Fluoxetine is the first selective serotonin reuptake inhibitor developed and is approved for the clinical treatment of depression. Emerging evidence suggests that fluoxetine can directly combine with the 5-HT receptor, which is a member of the G protein-coupled receptor (GPCR) family, in addition to suppressing the serotonin transporter. In this study, we prepared a chronic mild stress (CMS)-induced depression model with β-arrestin2-/- mice and cultured adult neural stem cells (ANSCs) to investigate the involvement of the 5-HT receptor-β-arrestin axis in the pathogenesis of depression and in the therapeutic effect of fluoxetine. We found that β-arrestin2 deletion abolished the fluoxetine-mediated improvement in depression-like behaviors and monoamine neurotransmitter levels, although β-arrestin2 knockout did not aggravate CMS-induced changes in mouse behaviors and neurotransmitters. Notably, the β-arrestin2-/- mice had a shortened dendritic length and reduced dendritic spine density, as well as decreased neural precursor cells, compared to the WT mice under both basal and CMS conditions. We further found that β-arrestin2 knockout decreased the number of proliferating cells in the hippocampal dentate gyrus and suppressed the proliferative capability of ANSCs in vitro. Moreover, β-arrestin2 knockout aggravated the impairment of cell proliferation induced by corticosterone and further blocked the fluoxetine-mediated promotion of mouse hippocampal neurogenesis. Mechanistically, we found that the 5-HT2BR-β-arrestin2-PI3K/Akt axis is essential to maintain the modulation of hippocampal neurogenesis in depressed mice. Our study may provide a promising target for the development of new antidepressant drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。