Meta-analysis Integrated With Multi-omics Data Analysis to Elucidate Pathogenic Mechanisms of Age-Related Knee Osteoarthritis in Mice

结合多组学数据分析的荟萃分析阐明小鼠年龄相关性膝关节骨关节炎的致病机制

阅读:7
作者:Hirotaka Iijima, Gabrielle Gilmer, Kai Wang, Sruthi Sivakumar, Christopher Evans, Yusuke Matsui, Fabrisia Ambrosio

Abstract

Increased mechanistic insight into the pathogenesis of knee osteoarthritis (KOA) is needed to develop efficacious disease-modifying treatments. Though age-related pathogenic mechanisms are most relevant to the majority of clinically presenting KOA, the bulk of our mechanistic understanding of KOA has been derived using surgically induced posttraumatic OA (PTOA) models. Here, we took an integrated approach of meta-analysis and multi-omics data analysis to elucidate pathogenic mechanisms of age-related KOA in mice. Protein-level data were integrated with transcriptomic profiling to reveal inflammation, autophagy, and cellular senescence as primary hallmarks of age-related KOA. Importantly, the molecular profiles of cartilage aging were unique from those observed following PTOA, with less than 3% overlap between the 2 models. At the nexus of the 3 aging hallmarks, advanced glycation end product (AGE)/receptor for AGE (RAGE) emerged as the most statistically robust pathway associated with age-related KOA. This pathway was further supported by analysis of mass spectrometry data. Notably, the change in AGE-RAGE signaling over time was exclusively observed in male mice, suggesting sexual dimorphism in the pathogenesis of age-induced KOA in murine models. Collectively, these findings implicate dysregulation of AGE-RAGE signaling as a sex-dependent driver of age-related KOA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。