Investigation of the Thermogelation of a Promising Biocompatible ABC Triblock Terpolymer and Its Comparison with Pluronic F127

研究有前景的生物相容性 ABC 三嵌段三元共聚物的热凝胶化及其与 Pluronic F127 的比较

阅读:7
作者:Anna P Constantinou, Valeria Nele, James J Doutch, Joana S Correia, Roman V Moiseev, Martina Cihova, David C A Gaboriau, Jonathan Krell, Vitaliy V Khutoryanskiy, Molly M Stevens, Theoni K Georgiou

Abstract

Thermoresponsive polymers with the appropriate structure form physical networks upon changes in temperature, and they find utility in formulation science, tissue engineering, and drug delivery. Here, we report a cost-effective biocompatible alternative, namely OEGMA30015-b-BuMA26-b-DEGMA13, which forms gels at low concentrations (as low as 2% w/w); OEGMA300, BuMA, and DEGMA stand for oligo(ethylene glycol) methyl ether methacrylate (MM = 300 g mol-1), n-butyl methacrylate, and di(ethylene glycol) methyl ether methacrylate, respectively. This polymer is investigated in depth and is compared to its commercially available counterpart, Poloxamer P407 (Pluronic F127). To elucidate the differences in their macroscale gelling behavior, we investigate their nanoscale self-assembly by means of small-angle neutron scattering and simultaneously recording their rheological properties. Two different gelation mechanisms are revealed. The triblock copolymer inherently forms elongated micelles, whose length increases by temperature to form worm-like micelles, thus promoting gelation. In contrast, Pluronic F127's micellization is temperature-driven, and its gelation is attributed to the close packing of the micelles. The gel structure is analyzed through cryogenic scanning and transmission electron microscopy. Ex vivo gelation study upon intracameral injections demonstrates excellent potential for its application to improve drug residence in the eye.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。