RE1 silencing transcription factor is involved in regulating neuron-specific expression of alpha-internexin and neurofilament genes

RE1 沉默转录因子参与调节 alpha-internexin 和神经丝基因的神经元特异性表达

阅读:3
作者:Gee Y Ching, Ronald K H Liem

Abstract

Alpha-internexin and the neurofilament triplet proteins (NF-L, NF-M, and NF-H) co-assemble into intermediate filament networks in neurons. We have found that the RE1 silencing transcription factor (REST) plays a contributory role in the neuron-specific expression of the alpha-internexin, NF-H and NF-M genes. Chromatin immunoprecipitation and transient transfection experiments performed with catecholaminergic neuronal Cath a.-differentiated (CAD) cells and non-neuronal NIH3T3 cells demonstrated that REST repressed transcription of these genes in NIH3T3 cells by binding and recruiting mSin3A, CoREST, histone deacetylase (HDAC) 1 and MeCP2 to the RE1 sites in the intron-1 of alpha-internexin and the 5' flanking regions of NF-H and NF-M. No repression effect of the RE1 sites was observed in CAD cells, which express these neuronal genes but not REST. Treatment of NIH3T3 cells with trichostatin A, a HDAC inhibitor, relieved the REST-mediated repression and induced ectopic activation of alpha-internexin, NF-H and NF-M. The trichostatin A treatment did not affect the levels of REST occupancy but caused coordinated changes in acetylation and methylation of histones around the RE1 sites of these genes in NIH3T3 cells consistent with a transition from transcriptional repression to transcriptional activation. Thus, REST regulates expression of these neuronal genes, partly by a HDAC-dependent epigenetic mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。