A Silkworm Infection Model for In Vivo Study of Glycopeptide Antibiotics

用于糖肽类抗生素体内研究的家蚕感染模型

阅读:5
作者:Aurora Montali, Francesca Berini, Maurizio Francesco Brivio, Maristella Mastore, Alessio Saviane, Silvia Cappellozza, Flavia Marinelli, Gianluca Tettamanti

Abstract

Glycopeptide antibiotics (GPAs) are drugs of last resort for treating infections by Gram-positive bacteria. They inhibit bacterial cell wall assembly by binding to the d-Ala-d-Ala terminus of peptidoglycan precursors, leading to cell lysis. Vancomycin and teicoplanin are first generation GPAs, while dalbavancin is one of the few, recently approved, second generation GPAs. In this paper, we developed an in vivo insect model to compare, for the first time, the efficacy of these three GPAs in curing Staphylococcus aureus infection. Differently from previous reports, Bombyx mori larvae were reared at 37 °C, and the course of infection was monitored, following not only larval survival, but also bacterial load in the insect body, hemocyte activity, phenoloxidase activity, and antimicrobial peptide expression. We demonstrated that the injection of S. aureus into the hemolymph of B. mori larvae led to a marked reduction of their survival rate within 24-48 hours. GPAs were not toxic to the larvae and cured S. aureus infection. Dalbavancin was more effective than first generation GPAs. Due to its great advantages (i.e., easy and safe handling, low rearing costs, low antibiotic amount needed for the tests, no restrictions imposed by ethical and regulatory issues), this silkworm infection model could be introduced in preclinical phases-prior to the use of mice-accelerating the discovery/development rate of novel GPAs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。