Collagen facilitates the colorectal cancer stemness and metastasis through an integrin/PI3K/AKT/Snail signaling pathway

胶原蛋白通过整合素/PI3K/AKT/Snail 信号通路促进结直肠癌干细胞和转移

阅读:7
作者:Xiangbin Wu, Jianhui Cai, Zhigui Zuo, Jinlei Li

Conclusion

Combining E7820 and chemotherapeutic agents to block the integrin α2β1/PI3K/AKT/Snail signaling pathway revealed dramatic enhanced tumor suppression and provided an innovative approach for clinical colorectal cancer treatment.

Methods

IHC was used to detect the expression of target proteins. H&E staining was used to evaluate the growth of tumor in vivo. Using wound healing and transwell assay, we examined the ability of cell to metastasis. We employed IF and Western blot to detect the expression of target proteins. And qRT-PCR was used to examine the target genes in mRNA level. We also applied flow cytometry to examine the percent of CD133+ cell population.

Purpose

Dynamic remodeling of the extracellular matrix (ECM) around tumor cells is crucial for the tumor progressions. However, the mechanism is not well defined. Here, we aimed to reveal the underlying mechanism of ECM induced metastasis and provide innovative strategy to suppress the distant metastasis induced by ECM. Materials and

Results

Herein, we observed elevated expression of type I collagen in colorectal cancer tissues from patients with high metastasis. Additionally, colorectal cancer cells cultured on 2D collagen reveal obviously enhanced capability of metastasis and tumorigenesis both in vitro and in vivo. We demonstrated that the activation of PI3K/AKT signal induced by integrin α2β1 resulted in the enhanced metastatic capability and stemness of colorectal cancer cells. Moreover, we found that Snail worked as the downstream of PI3K/AKT signaling, resulting in the intensive invasion and metastasis of colorectal cancer. Blocking the pathway by applying E7820 successfully reversed the type I collagen induced distant metastasis in colorectal cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。