Enzyme Inhibitory, Antioxidant And Antibacterial Potentials Of Synthetic Symmetrical And Unsymmetrical Thioureas

合成对称和不对称硫脲的酶抑制、抗氧化和抗菌潜力

阅读:4
作者:Sumaira Naz, Muhammad Zahoor, Muhammad Naveed Umar, Barkat Ali, Riaz Ullah, Abdelaaty A Shahat, Hafiz Majid Mahmood, Muhammad Umar Khayam Sahibzada

Background

In this study, 2 symmetrical and 3 unsymmetrical thioureas were synthesized to evaluate their antioxidant, antibacterial, antidiabetic, and anticholinesterase potentials.

Conclusion

From the results, it was concluded that these compounds could be used as antibacterial, antioxidant, and antidiabetic agents. However, further in vivo studies are needed to determine the toxicological effect of these compounds in living bodies. The compounds also have potential to treat neurodegenerative diseases.

Methods

The symmetrical thioureas were synthesized in aqueous media in the presence of sunlight, using amines and CS2 as starting material. The unsymmetrical thioureas were synthesized using amines as a nucleophile to attack the phenyl isothiocyanate (electrophile). The structures of synthesized compounds were confirmed through H1 NMR. The antioxidant potential was determined using DPPH and ABTS assays. The inhibition of glucose-6-phosphatase, alpha amylase, and alpha glucosidase by synthesized compounds was used as an indication of antidiabetic potential. Anticholinesterase potential was determined from the inhibition of acetylcholinesterase and butyrylcholinesterase by the synthesized compounds.

Results

The highest inhibition of glucose-6-phosphatase was shown by compound V (03.12 mg of phosphate released). Alpha amylase was most potently inhibited by compound IV with IC50 value of 62 µg/mL while alpha glucosidase by compound III with IC50 value of 75 µg/mL. The enzymes, acetylcholinesterase, and butyrylcholinesterase were potently inhibited by compound III with IC50 of 63 µg/mL and 80 µg/mL respectively. Against DPPH free radical, compound IV was more potent (IC50 = 64 µg/mL) while ABTS was more potently scavenged by compound I with IC50 of 66 µg/mL. The antibacterial spectrum of synthesized compounds was determined against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Agrobacterium tumefaction and Proteus vulgaris). Compound I and compound II showed maximum activity against A. tumefaction with MIC values of 4.02 and 4.04 µg/mL respectively. Against P. vulgaris, compound V was more active (MIC = 8.94 µg/mL) while against S. aureus, compound IV was more potent with MIC of 4.03 µg/mL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。