Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages

神经网络学习将胶质母细胞瘤的特征定义为神经嵴血管周围或放射状胶质细胞谱系

阅读:9
作者:Yizhou Hu, Yiwen Jiang, Jinan Behnan, Mariana Messias Ribeiro, Chrysoula Kalantzi, Ming-Dong Zhang, Daohua Lou, Martin Häring, Nilesh Sharma, Satoshi Okawa, Antonio Del Sol, Igor Adameyko, Mikael Svensson, Oscar Persson, Patrik Ernfors

Abstract

Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation of glioblastoma cells to normal brain cell types. A novel neural network-based projection of the developmental trajectory of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can arise from the brains' vasculature, and patients with such glioblastoma have a significantly poorer outcome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。