Biocompatibility and Osteogenic Activity of Samarium-Doped Hydroxyapatite-Biomimetic Nanoceramics for Bone Regeneration Applications

钐掺杂羟基磷灰石仿生纳米陶瓷的生物相容性和成骨活性及其在骨再生中的应用

阅读:7
作者:Mihaela Balas, Madalina Andreea Badea, Steluta Carmen Ciobanu, Florentina Piciu, Simona Liliana Iconaru, Anca Dinischiotu, Daniela Predoi

Abstract

In this study, we report on the development of hydroxyapatite (HAp) and samarium-doped hydroxyapatite (SmHAp) nanoparticles using a cost-effective method and their biological effects on a bone-derived cell line MC3T3-E1. The physicochemical and biological features of HAp and SmHAp nanoparticles are explored. The X-ray diffraction (XRD) studies revealed that no additional peaks were observed after the integration of samarium (Sm) ions into the HAp structure. Valuable information regarding the molecular structure and morphological features of nanoparticles were obtained by using Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The elemental composition obtained by using energy-dispersive X-ray spectroscopy (EDS) confirmed the presence of the HAp constituent elements, Ca, O, and P, as well as the presence and uniform distribution of Sm3+ ions. Both HAp and SmHAp nanoparticles demonstrated biocompatibility at concentrations below 25 μg/mL and 50 μg/mL, respectively, for up to 72 h of exposure. Cell membrane integrity was preserved following treatment with concentrations up to 100 μg/mL HAp and 400 μg/mL SmHAp, confirming the role of Sm3+ ions in enhancing the cytocompatibility of HAp. Furthermore, our findings reveal a positive, albeit limited, effect of SmHAp nanoparticles on the actin dynamics, osteogenesis, and cell migration compared to HAp nanoparticles. Importantly, the biological results highlight the potential role of Sm3+ ions in maintaining cellular balance by mitigating disruptions in Ca2+ homeostasis induced by HAp nanoparticles. Therefore, our study represents a significant contribution to the safety assessment of both HAp and SmHAp nanoparticles for biomedical applications focused on bone regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。