miR-96 acts as a tumor suppressor via targeting the BCR-ABL1 oncogene in chronic myeloid leukemia blastic transformation

miR-96 通过靶向 BCR-ABL1 致癌基因在慢性粒细胞白血病急变过程中发挥肿瘤抑制作用

阅读:4
作者:Tao Huang, Yue Fu, Siqi Wang, Man Xu, Xiaolin Yin, Minran Zhou, Xiaoming Wang, Chunyan Chen

Abstract

MicroRNA-mediated posttranscriptional regulation is an important epigenetic regulatory mechanism of gene expression, and its dysregulation is involved in the development and progression of a variety of malignancies, including chronic myeloid leukemia (CML). The BCR-ABL1 fusion gene is not only the initiating factor of CML, but it is also an important driving factor for blastic transformation. Tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1 tyrosine kinase activity, represented by imatinib, are currently the first-line treatment for CML. However, due to primary resistance or secondary resistance caused by mutations in the BCR-ABL1 kinase domain, TKIs cannot completely prevent the progression of CML; thus, the study of BCR-ABL1 gene expression regulation is of great significance. In this study, bioinformatics analysis and our results showed that miR-96 could directly bind to the 3'UTR region of BCR-ABL1 to regulate fusion protein expression, thereby regulating its downstream signaling pathway activity. We also found that miR-96 was downregulated during the progression from the chronic phase (CML-CP) to the blast crisis (CML-BC). Downregulation of miR-96 could promote the proliferation and participate in the cell differentiation of CML-BC cells. Additionally, we found that the novel histone deacetylase drug chidamide and the DNA methyltransferase inhibitor decitabine could restore the low expression of miR-96 in CML cells, and there were two abnormal hypermethylated sites in the promoter region of miR-96 in CML, suggesting that its low expression might be at least partially regulated by epigenetic mechanisms. In addition, re-expression of miR-96 could increase the sensitivity of CML-BC cells to imatinib. Thus, miR-96 functions as a tumor suppressor, and re-expression of this microRNA might have therapeutic benefits in CML blastic transformation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。