The highly selective green colorimetric detection of yttrium ions in biological and environmental samples using the synergistic effect in an optical sensor

利用光学传感器的协同效应对生物和环境样品中的钇离子进行高选择性绿色比色检测

阅读:6
作者:Mahmood D Aljabri, Salah M El-Bahy, Refat El-Sayed, Khaled F Debbabi, Alaa S Amin

Abstract

A new eco-friendly method for creating an optical sensor membrane specifically designed to detect yttrium ions (Y3+) has been developed. The proposed sensor membrane is fabricated by integrating 4-(2-arsonophenylazo) salicylic acid (APASA), sodium tetraphenylborate (Na-TPB), and tri-n-octyl phosphine oxide (TOPO) into a plasticized poly(vinyl chloride) matrix with dimethyl sebacate (DMS) as the plasticizer. In this sensor membrane, APASA functions dually as an ionophore and a chromoionophore, while TOPO enhances the complexation of Y3+ ions with APASA. The composition of the sensor membrane has been meticulously optimized to achieve peak performance. The current membrane exhibits a linear dynamic range for Y3+ ions from 8.0 × 10-9 to 2.3 × 10-5 M, with detection and quantification limits of 2.3 × 10-9 and 7.7 × 10-9 M, respectively. No interference from other potentially interfering cations and anions was observed in the determination of Y3+. The membrane showed strong stability and a swift response time of about 3.0 minutes, with no signs of APASA leaching. This sensor is highly selective for Y3+ ions and can be renewed by treating it with 0.15 M HNO3. It has been effectively applied to measure Y3+ in nickel-based alloys, as well as in biological and environmental samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。