Modular Synthesis and Patterning of High-Stiffness Networks by Postpolymerization Functionalization with Iron-Catechol Complexes

通过铁-儿茶酚配合物的聚合后功能化实现高刚度网络的模块化合成与图案化

阅读:5
作者:Declan P Shannon, Joshua D Moon, Christopher W Barney, Nairiti J Sinha, Kai-Chieh Yang, Seamus D Jones, Ronnie V Garcia, Matthew E Helgeson, Rachel A Segalman, Megan T Valentine, Craig J Hawker

Abstract

Bioinspired iron-catechol cross-links have shown remarkable success in increasing the mechanical properties of polymer networks, in part due to clustering of Fe3+-catechol domains which act as secondary network reinforcing sites. We report a versatile synthetic procedure to prepare modular PEG-acrylate networks with independently tunable covalent bis(acrylate) and supramolecular Fe3+-catechol cross-linking. Initial control of network structure is achieved through radical polymerization and cross-linking, followed by postpolymerization incorporation of catechol units via quantitative active ester chemistry and subsequent complexation with iron salts. By tuning the ratio of each building block, dual cross-linked networks reinforced by clustered iron-catechol domains are prepared and exhibit a wide range of properties (Young's moduli up to ∼245 MPa), well beyond the values achieved through purely covalent cross-linking. This stepwise approach to mixed covalent and metal-ligand cross-linked networks also permits local patterning of PEG-based films through masking techniques forming distinct hard, soft, and gradient regions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。